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ABSTRACT

We describe a method for optimizing the design (shape of the dis-
placer) of low-power Stirling cryocoolers relative to the power required
to operate the systems. A variational calculation which includes static
conduction, shuttle, and radiation losses, as well as regenerator inef-
ficiency, has been completed for coolers operating in the 300 K to 10 K
range. While the calculations apply to tapered displacer machines,
comparison of the results with stepped-displacer cryocoolers indicates
reasonable agreement.

INTROBUCTION

The general wisdom of intercepting heat transfer from a warm to a
cold region by refrigeration at intermediate temperature levels has long
been appreciated. The Carnot coefficient, /T- 1 which governs the
power requwred to refr1gerate at a temperatamg T, below the ambient
temperature, is at the heart of this thought. Cryocoolers are
commonly des1gﬁ% to fit an a priori, and often highly subjective, choice
of refrigeration power at one or more low temperatures. One measure of
performance is the efficiency of the cryocooler at the specified refrigera-
tion power, that is, the ratio of the actual drive power to the ideal
drive power as calculated using the Carnot coefficient. It is implicit in
this approach that if such a machine is used in an application requiring
very much less than the specified refrigeration power, the total system
may be grossly inefficient. There is now a need to provide refrigeration
for a number of very low-power cryoelectronic devices which require almost
negligible refrigeration power (less than a milliwatt) at temperatures
below about 8 K. In this case optimal interception of heat flow is of
paramount importance and efficiency becomes a meaningless measure of
performance. In this paper we consider such optimization for a class of
Tow-power Stirling cryocoolers which use plastic materials in a gap-type
regenerator [1-3]. In the course of this study we would like to propose
alternate measures of performance for such machines which could provide
for a rational comparison of different concepts.

* This work was supported in part by the Office of Naval Research under
contract number NO0O014-82-F-0040.
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As a preliminary problem, we consider the optimum refrigeration
distribution for leads and support structures which connect room tempera-
ture to low temperature regions. This problem leads naturally to the
consideration of the geometrical configuration of a Stirling cryocooler
which provides for optimum cooling (that is, minimum drive power), which
is the thrust of this work.

OPTIMAL REFRIGERATION DISTRIBUTION FOR CONDUCTION LOSSES

The problem considered here is that of interception of heat flowing
along a support rod or electrical lead with the minimum amount of work
performed by the refrigerator. For simplicity we assume a uniform cross
section of area, A, for the heat conducting element and a thermal con-
ductivity, k, which is independent of temperature. The optimization takes
the form of a variational calculus problem [4] in which the direct output
is the axial temperature distribution which results in the minimum work
performed by the refrigerator. From this temperature distribution we can
readily calculate the continuous refrigeration distribution which our
imaginary refrigerator must provide.

The conduction heat flow is simply

o dT
Q—kAa;(‘. (1)

The net work, w, done by the refrigerator in cooling from ambient tempera-

ture, Tamb at x to some lower temperature, TO, at x = 0 is given by

We consider variations ofi T and find the T(x) for which w is stationary,
that is, at an extremum. Applitation of the calculus of variations [4]

leads to the differential equation
2 2
a1 _ {4} . (3
T <dx)'0’ )

dx

which has the solution
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T=Te", (4)

where

1
o= o In (T /7). (5)

amb

This exponential temperature distribution is the optimum one for this
situation (constant k and uniform cross section). The distribution of
refrigeration is calculated using eguation 2.

[f the thermal conductivity has the form k = k Tn, (n 1is a
positive integer) the variational method leads to a differeftial equation
2 2
r 4T +1§(n-2)(gi) . (6)
dx X

which except for n = 0 has the solution

where

= (T M2 1My, (8)

This type of calculation need not be restricted to elements of
uniform cross section. For example, the optimum temperature distribution
for heat flow along a truncated cone (big end at higher temperature) can
be shown by a similiar approach to be derived from the differential
equation

2 2
d’T n 1 [dT 2 dT  _
AR (a;) Fioa 0 (%)

where n is the power of the temperature in the thermal conductivity (as
before).
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The conduction loss is given rigorously by the equation

: _oa dT 2 dT
Qcon—kAE;—wk(r‘+t) x (10)

where the thermal conductivity, k, is a function of temperature, T, and
the cross-sectional area, A, is taken to be a function of the position, x,
along the displacer, since we wish to consider variations of the displacer
shape and thus of its area. In the second form of this equation, the area
has been expressed in terms of the displacer radius, r, and the sleeve
wall thickness, t.

For plastic displacers operating at low speed, Radebaugh and
Zimmerman [5] have shown that a conduction-like form, devoid of gas
properties, is appropriate for the description of shuttle heat loss.

Q =r S° -— = 8¢Ef; r ar . (11)

Here r, the radius of the displacer, is a function x. S 1is the stroke,
h is the frequency and k and C  the thermal conductivity and specific
heat of the displacer and s]eevevwa11s, both being explicit functions of
temperature. The factor B includes all of the constants in the equation.
The assumptions are that (i) solid thermal properties are only weak
functions of temperature, (ii) thermal resistance of the gas gap is
negligible, (iii) the effect of gas-pressure cycling is negligible, i.e.,
heat capacity of the gas in the gap is negligible and regeneration is
complete, (iv) interaction of the axial conduction effects in the
displacer and wall are negligible, and (v) motion of the displacer is
sinusoidal. The authors showed good experimental agreement with this
equation for temperatures down to 102° K. Assumption (iii) concerning
the heat capacity of the gas might be expected to break down as the
temperature falls below 10° X where regeneration problems arise.

For the sake of this calculation we wish to consider an alternate,
distributed form for the radiation loss [6]. We assume that 4 or 5
radiation shields will be attached along the length of the machine to
intercept the radiation at higher temperatures where refrigeration
efficiency is better and that liberal use of multiple super-insulation
layers will be made between radiation shields. If ax is the spacing
(axially) between grounded radiation shields and n s the number of
super-insulation layers per unit length (again axially), then we write
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Qpyq = (220A) (ax/ (nax+1))T3 g£-= e gg-, (12)

where A_ is surface area of the radiation shields (assumed to be the
same for all shields), o is the Stephan Boltzman constant and ¢ the
emissivity of the superinsulation layers (taken to be 0.5 for the usual
atuminized plastic material. In the abbreviated form y collects together
all of the constant terms. To be sure, this is a very rough sort of
estimate, but it can be 1left so for several reasons. First, with
sufficient shielding radiation losses can be held to a Tlevel which is
significantly below other losses (10 to 20%) and second, radiation losses
can be made negligible at the Tow temperature end where most of the real
refrigeration problems arise. Finally, since we are approximating a
discrete process (4 or 5 grounded shields) with a differential equation we
should not take the exact form too seriously since the heat loss is, in
fact, not distributed continuously along the displacer.

Radebaugh [7] has expressed the regenerator inefficiency for
low-speed, plastic-displacer Stirling coolers in a form which is suitable
for our purposes.

S 2 . say-1/2 dT _ 2
Qeg=(mCy) n (2nkC, /1) ax “8(me)/(rkC)) (13)

Here m is the total helium mass flow into the expansion space and C_ is
the specific heat of heljum at constant pressure. Again, § iS5 a
collection of all the constants. The assumptions here are many: (1)
temperature variation at the surface 1is sinusoidal, (ii) surface
temperature is the gas temperature, (iii) gas volume in the regenerator is
negligible, (iv) sinusoidal heat flow is only in the radial direction, (v)
the expansion and compression space are isothermal, and (vi) various heat
flows to the expansion space are independent of one another. Assumptions
(i) and (v) are of greatest concern. The mass flow is only approximately
sinusoidal, but the assumption greatly simplifies the form of the
equation. Radebaugh shows that assumption (v) yields errors about a
factor of 2 at 5 K and these reduce rapidly as temperature is increased.

A final loss term accounting for the non-ideal properties of helium
gas might also be included. Like the regenerator inefficiency the
non-ideal gas term (alternatively referred to as the enthalpy deficit)
also depends on the gas flow and thus the calculations of the two terms
should be similar. There is an important qualitative difference between
the two terms however. The steeply decreasing heat capacity of many
regenerator materials at low temperatures and the consequent steeply
rising regenerator efficiency makes it difficult to achieve temperatures
below 5 or 6 K (although a temperature approaching 3 K was achieved by
operating a regenerative machine at sub-atmospheric pressure [3].
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According to our preliminary calculations, the non-ideal gas properties of
helium do not particularly limit the temperature that can be achieved, and
in fact it is conceivable that they might be used to advantage in certain
situations. We will assume ideal-gas behavior for the present
calculation, but the non-ideal behavior could be added Tlater as a
refinement of the model.

The differential refrigeration, dW, 1s

Pressurel fDifferential Cycle
Change Volume Rate

dW =
(14)
= (Pu— PQ) (27Srdr) (n)
where and P_ are the upper and lower pressures, respectively.
Integratqng, the &efr1gerat1on is found to be
W= Brz , (15)
where B = #Sa (P is a constant. W is thus a function of the

radius, r, and r Vs § function of the position, x, along the displacer.

This form is valid where the displacer follows a square wave motion.

Where sinusoidal motion is used, the Schmidt analysis should be applied,
but for simplicity we simply reduce equation 14 by the multiplicative
factor 2/m.

Also, equation 14 applies only to the case where there is no pressure
change during the displacement parts of the thermodynamic cycle. The
ideal cycle ?consisting of two isothermal and two isobaric processes) is
commonly called the Ericsson cycle. 1In the ideal Stirling cycle (two
isothermal and two constant-volume processes), there are pressure changes
during all parts of the cycle and consequently a significant amount of
refrigeration occurs during displacement as well as during expansion by
the piston [8]. We have not tried to take account of this effect since it
is not yet clear whether the Stirling or the Ericsson cycle (or some other
idealization) 1is a better approximation to the actual operation of the
machines to which these calculations are to be applied.
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HEAT CONTENT OF THE WORKING FLUID

In equation 13, the term mC_, which is a function of x, represents
the heat content of all the gas which moves down past the point x on the
displacer. It clearly depends on the geometry of the displacer and thus
is not known until the displacer shape is known. It can be expressed as

- = PV -2 PV 16
My =N "/ lom =2 T - (16)

Here N is the number of moles of gas and C -2 R is the specific
heat per mole for helium gas. The vo]umeP"]V, %nd temperature are
functions of x and we choose to fix the pressure at Pu’ a point to which
we will return. Then we may write

A X
e -5p faus, |Yors f 2w oo o
P 2 u o T 2 u To o T dx (17)
Y‘Z X
=0 4o fﬁd—‘”dx ,
To T dx
0]

where X = 57SP /22 r is the radius of the displacer at the bottom
end, and V. = fr S 5 the expansion volume at the bottom end. That
the disp]ac%r should be blunt (of finite radius) at the bottom end can be
understood by noting that some finite heat is always transferred all the
way to the bottom end and thus some finite refrigeration is required at
that point. Conduction through the sleeve wall is just one of the ways in

which heat arrives at the bottom end.

In general the maximum pressure, P , 1is not coincident with the
minimum volume in a Stirling machine, sd, in principle, some pressure
between P and P, should be used in equation 17. However, the
regeneratoV loss ferm is calculated under the assumption that the
temperature variation is sinusoidal and this also is not quite right.
This last consideration suggests that equation 13 will underestimate the
regenerator loss. Thus, we choose to use P in calculating mC_ since
this increases the regenerator inefficiency tdrm and compensates Ro some
degree for the effect of non-sinusoidal temperature variation.

GENERAL APPROACH TO OPTIMIZATION

The approach which we have chosen involves variation of solutions to
arrive at the optimum solution from an initial, rather arbitrary guess.
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We select a power series to represent the temperature distribution along
the displacer.

_ 2 3 7
T(X)_TO+T1X+T2)( +T3x + .. .. .T7X . (18)

If the top end_temperature is constrained to be ambient temperature,
Tamb’ (e.q. 300° K) and the bottom temperature (at x = 0) is fixed at
T°"(e.q. 10 K), the normalization of x to the Tlength, L, of the
rgfrigerator yields the constraint

T, + T+ T+ o T, =T

172" 13 (19)

since x = 1 at the top end. A simple initial guess is that the
temperature distribution is linear, that is, T, = T - T and the
other coefficients are zero. This also fixes th% init%%q gueé% for the
temperature derivative, dT/dx.

Referring to figure 1 for nomenclature, the radius, r_, of the
displacer at the cold end (x = 0) can be found by eq&%ting the
refrigeration term (equation 15) to the sum of the loss terms (equations
10, 11, 12, and 13). Since mC_ (given by equation 17) is known at the
bottom in terms of r, we can ilkert that into the regenerator loss term.
The result is

2 2 3 23 dT
Broo —[ﬁk(ro +t)" + SVECVFO + 4T + 8a rO/VECV] - (20)

In terms of the initial guess for T(x), a consistent value for r_ can be
obtained from this cubic equation since all elements in it are known.

In general we cannot use this procedure to obtain r at other
positions along the displacer because the value for mC_ at points above
the bottom end depends on the shape of the disp1acerpwhich is as yet
undetermined. However, assuming that the regenerator term is not the
overwhelming one, an iterative process (by computer) can be used to arrive
at a displacer shape which provides for consistency between mC_ as a
function of x and the balance of refrigeration and Tosses. The Batance
equation is now

Br =[nk(r+t)2 + gvkCor + T2 45 (me)z/(P/EE;)] %%’- (21)
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Here we must use equation 17 for mC_. We break the range of x into
increments of Ax and, for x = AX Riculate a value for r from this
equation using the value of mC_ at x = 0. mC_ at x = Ax can now be
calculated from equation 17. We proceed to suﬂ%equent increments using
the same procedure (that is, using the value of mC_ from the previous
increment) until the entire range of x is coveréd. This procedure
generates a first approximation for r(x) and for mC_ as a function of x.
The values for mC_ are then shifted down one incrBment (Ax) since they
are really associated with the values of r at those points. In the next
iteration we use this information to 1mprove upon the first approx1mat10n
that is, a new r(x) (and thus mC is calculated using the old mC
The process is repeated until convé%gence is achieved, at which point
have a self consistent solution (mC_ and displacer shape). In pract1ce
this convergence is rather rapid, redﬁiring less than 10 iterations.

For this particular guess at the optimum solution, the net power
required to operate the machine can now be calculated using equation 2
where dQ/dx is the sum of the derivatives of the loss terms. Since this
sum equals the derivative of the refrigeration power, that could equally
well be used to calculate the net power (this is a convenient internal
check on the consistency of the calculation).

Having calculated the net power to run this particular refrigerator,
we can proceed to search for the optimum design, that is, the temperature
distribution and displacer shape which minimize the drive power. The
process involves variation of the coefficients in the expansion of T (see
equation 18) consistent with the constraint given by equation 19. The
variations which yield reductions in the power requirement are followed
until further variations of any of the coefficients yield no further
decrease.

We now assert (without proof) that this is the optimum solution. On
general grounds one can argue that this could represent a local minimum (a
sort of metastable solution) and that a solution of still Tower power
requirement might yet exist. In fact, we can offer no general proof that
this is not true, but uniqueness of the solution can be tested by trying a
variety of initial guesses for T(x). These will produce a different
history in the search for the optimum solution, but arrival at the same
solution will add confidence to the validity of the final result. A final
point should be made. The problems on conduction loss considered in
section 2.0 all had unique solutions and these were produced by a more
rigorous method. While the refrigerator problem is more complex, the loss
terms (Q's) in most reasonable situations (certainly in all cases which we
have considered) are rather simple monotonically increasing functions of
postion along the displacer and thus we don't expect the general character
of the solutions to be significantly different from those derived in
section 2.0.

As mentioned at the beginning of this section (3.0), additional

support members or electrical leads can be included if necessary. The
implicit assumption of this assertion is that the only loss for these

115



elements will be by conduction and that the temperature profile for them
will be identical with that for the cooler itself. In general, this will
require a number of thermal tie points between these elements and the
cooler. With this condition, the additional loss can be added directly to
equations 20 and 21. The cross sectional area for such members could be
constant or some fixed function of x. Another reasonable modification
which we have incorporated is the allowance for a hollow displacer (to cut
down on conduction Toss). For simplicity of description this has not been
included explicitly, but the process involves a simple modification of the
conduction term in equations 20 and 21. Actually we assume that the
hollow space is filled with helium gas and include conductive but not
convective heat transfer in the gas (i.e. convection eliminated by filling
with glass fiber or some cellular material). Finally, if we add a
constant power to these two equations we can provide for dissipation at
the bottom end. 1In effect, the solution thus obtained will produce a
refrigeration power equal to this constant.

The method used to attack this refrigerator problem parallels the
simpler problem described in section 2.0. In both cases we consider
variations in T for which the work integral, equation 2, is stationary
with the constraint that temperature is fixed at the hot and cold ends.
The primary difference of a general nature is that the system is really
taken through the variations in the one case where an identification of
the stationary solution based on the formal variational calculus is used
in the other.

DESCRIPTION OF THE COMPUTER CODE

A simplified version of the flow chart which describes the computer
code is shown in figure 2. Care should be used in literal use of this
flow chart since there are implied actions which have been omitted for
simplicity. These will be mentioned in the step by step description of
the program. The numbers below refer to the segments of the program as
shown in the figure. (1) The T(I) referred to here are the seven
coefficients 1in the expansion of temperature as a power series in x
(equation 18). Thus the index I which identifies the particular
coefficient runs from 1 to 7. J 1is an integer which indexes the
particular passage through the calculation for a particular value of I.
It is reset to 0 for each change of I. (2) In this step the radius of
the displacer at the bottom end is calculated using equation 20. J is
also advanced at this step. (3 and 4) The procedures for these steps are
described rather completely in section 3.3. The pertinent equations are
17 and 21. (5) The power integral to be calculated is given by equation
2. In this equation dQ/dx is the sum of the derivatives of the loss terms
given by equations 10, 11, 12, and 13. In general these are expressed not
only as funct%ons éﬂf r, k, and CV but also of dr/dx, dK/dT, dC /dT,
dT/dx, and d°T/dx". These are ‘readily generated from informdtion
already available at this point. The power integral includes the power
required for refrigeration in the bottom expansion volume. (6) J = 1
means this is the first pass for a particular value of I and thus, before
proceeding, a variation must be made in T so as to have two values of
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power for comparison. The process for varying T, depicted by the box
here, involves addition of a fixed increment to one coefficient.
Actually, to fulfill the requirement of equation 19 (boundary condition
for temperature), an addition to one coefficient must be balanced by an
equal reduction in one or more of the other coefficients. This will be
discussed in more detail shortly. (7 and 8) Here the power just
calculated in step 5 is compared with the value calculated in the previous
pass. If this new value is smaller, the variation is pursued for another
pass. If the new power is larger either the current round of variations
has been played out for this particular value of I or this is the second
pass and the variation should be reversed to see whether reduced power is
found for the opposite variation. If J = 2 (i.e. second pass), it should
be clear that the reversed variation must take one back beyond the first
pass selection. We do this by reversing the increment and doubling its
value of this one pass. Also, once the variation is reversed, the program
should retain that sign for subsequent passes so that a yes answer at step
7 results in a further variation in the profitable direction. (9) Once
the variations for a particular coefficient I are completed (no further
reduction in power) the program moves on. In making this step the power
(and the coefficient value associated with it) must be the lowest value
just found. This simply means that one must go back to the previous pass
since the Tlogic has forced exit from step 8 after an increase in the
power. In step 9, a test is done to see if all coefficients have been
varied. If not the next one is selected and the process restarted. (10)
If all of the coefficients have been varied, this set is compared with the
set from the previous pass (the initial set if this is the first time
through to this point). [If the two sets are not identical, the whole
process is rerun to generate another set of coefficients. This process is
repeated until the coefficients do not change with further variations.
(11) At this point a further refinement of the result can be achieved by
a reduction of the increment used in the variational process. The
integration increment used in step 5 could also be reduced to improve that
process. Then, with the Tlast set of temperature coefficients as a
starting point, the entire procedure could be repeated until some preset
measure of convergence is met. We have found that the computer costs at
this stage are not negligible and have chosen to run through the whole
process no more than 2 or 3 times. In general, the degree of convergence
has generally been quite acceptable where a variational increment of 1.5 K
and 50 steps per integral was used. (12) The final step involves output
and is highly subjective in form. We have chosen to generate plots of T,
r, mC_, Q, and W (the power integral) as functions of x. The Q and W
outpuf) can be broken down into the separate loss terms to show the
relative importance of the different losses along the displacer.

The rate of convergence on the solution depends upon the exact form
of the variation in step 6. We have tried only two. First (to satisfy
equation 19), we have simply added to one coefficient and subtracted from
the adjacent one. While this works sometimes, it can lead to difficulty
and we have achieved better results including faster convergence with
another simple procedure. The increment which is added to one coefficient
is simply divided by 7 and that amount 1is subtracted from every
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coefficient. This procedure more clearly emphasizes the one coefficient.
The program could be improved (faster convergence) by more careful
consideration of the form of the variation.

At times it has been difficult to arrive at a satisfactory initial
guess for the coefficients. Without the regenerator term almost any
simple guess works (e.g. T, = 290 K and all others are zero). But when
the regenerator term 1is in%luded this is not the case. The solution of
equation 20 for the bottom end radius becomes highly dependent upon dT/dx
at x = 0. If this derivative is too large there is no real, positive
solution to the cubic equation 20 which simply means that the selected
temperature derivative is inconsistent with any realizable refrigerator.
For sufficiently small values of dT/dx at x = 0, two real, positive
solutions are found and we always select the smaller of the two. The
program can potentially run into unrealistic situations on its own. This
happens particularly where the initial temperature profile is dramatically
removed from the final one or as the calculation is pushed into regions
where realizable results simply aren't expected for other reasons. For
example, as the length of the displacer (an externally fixed constant) is
reduced, the power requirement increases without bound and it becomes
increasingly difficult to find any initial temperature profile which does
not cause problems. Another type of problem arises when dT/dx goes to
zero at any point along the displacer. Here, equations 20 and 21 become
indeterminant, that is, no solution can be found for r (or r_). The net
effect of these considerations is a need to build certain tefts into the
program to assure proper exit and diagnostics when an unrealistic solution
is encountered.

RESULTS OF THE CALCULATION

Based on earlier experimental work [1-3] on coolers of this type
(stepped rather than tapered displacers), we have selected a set of
parameters for a 'standard' low-power cryocooler. These parameters are
given in Table I and represent the base from which we vary an individual
parameter to study its effect. The remaining figures in the paper refer
to this standard set of parameters. The displacer is taken to be hollow
(as mentioned in section 3.3) so the table also includes a displacer wall
thickness as well as a sleeve wall thickness.

The thermal conductivity is that of spun glass epoxy (designated G-10
by the National Electronic Manufacturers Association), which we represent
by

2 3

K =5.7 x 1072 +5.03 x 10757 - 2.02 x 107212 + 3.6 x 107873

b

where the units are W/K-m. Similarly, the specific heat of the G-10
material is represented by
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¢, = - 1.36 x 10" + 4.4 x 1031 + 17912 - 8.72 x 10°41% + 1.3 x 10747,
where the units are J/km3.
Figure 3 shows the results for T = 5 K, a lower temperature than

might be justified by the assumptions, But which emphasizes the effects of
inclusion of the regenerator loss term. The upper two boxes show the
optimized temperature profile and displacer shape in cases both including
and excluding regenerator loss. In the bottom box we present the work
integral (equation 2) for each loss term as a function of position along
the displacer. Each point on one of these curves represents the total
drive power required to take care of the particular loss term below the
associated value of x. The curves in this lower box are associated with
the profiles which include regenerator loss in the upper two boxes.

Several points should be noted. First, while regenerator losses are
only significant at the cold end, radiation losses can be effectively
intercepted at higher temperature. The inclusion of regenerator loss
forces an elongated narrow end to the displacer which might be
approximated by two conical sections. The temperature profile is
similarly distorted. The importance of shuttle heat transfer is clear and
its similarity to conductive heat transfer is perhaps surprising.

Note the slight irregularity at the upper end of the displacer for
the case which excludes regenerator loss. We often find distortions (both
positive and negative) in this region which we attribute to the lack of
emphasis given this part of the displacer by the calculation. That is,
the contribution to the power integral at the upper end is almost
negligible and thus the variations simply emphasize the regions of the
displacer which contribute significantly to the work integral.
Presumably, such distortion would be eliminated with complete convergence,
but with little further change in the power requirement. This is born out
in a study of several iterations with successively smaller variational
increment (see section 3.4).

Figures 4, 5, 6, and 7 display the effects of altering the stroke,
length, frequency, and bottom-end dissipation for T_ = 10 K. The curves
represent the total power for each loss element (thg value of the respec-
tive parts of the work dintegral at the top of the cooler). The
refrigerator has been optimized for every value of the independent
variable (e.g. stroke) where all the other parameters are maintained at
the standard values shown in Table 1.

Several general comments can be made. Except where length is varied,
the radiation loss is independent of the other parameters. This simply
means that modest variations of the temperature profile have no marked
effect on radiation loss. The linear increase of radiation loss with
length (figure 5) seems reasonable since radiation surface area is also
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linearly dependent on length. Regenerator loss is strongly dependent on
the expansion volume at the bottom end. For example, as stroke is
increased (figure 4) the regenerator loss increases as expected. The
increases of regenerator loss with decreasing stroke in the Timit of short
stroke can be understood as arising from the precipitous increase in
bottom end radius in this region. Remember that these curves represent a
continuous set of optimized refrigerators, not a single refrigerator of
fixed geometry. The regenerator loss dependence on expansion volume is
clearly seen in equation 17 where the heat content of the fluid depends on
how much gas is present. This plays an important role in the loss term
(equation 13).

Shuttle heat transfer and conduction loss dominate these figures with
only minor contributions from radiation and regeneration. The strong
cross- over of the two leading terms with variation of stroke (figure 4)
produces the most notable minimum in total power. The minimum appears to
be at about 3 mm rather than the 5 mm value of the standard parameter set.
For alterations of length (figure 5) and frequency (figure 6), the most
notable effect is a sharp rise in power for small values of these
parameters. Conduction and shuttle losses generally increase with
increase in the size (radius) of the displacer. This is consistent with
their respective dependences on displacer cross sectional area and surface
area. The exception to this rule occurs where decrease in stroke results
in decreasing shuttle loss even though the displacer size 1is rising
rapidly.

For modest heat dissipation at the cold end, the power requirement
rises almost linearly as seen in figure 7. Actually the only loss term
which is not essentially linear over this range is regenerator loss. This
is the only case where the drive power required for the cold end expansion
space becomes really significant, rising to 0.36 watts at a refrigeration
power of 10 mW from 0.03 watts with no dissipation. As discussed in
section 3.4, the optimization includes the power required for this bottom
end cooling, but it is not shown in figures 4, 5, 6, and 7 because it is
so small.

Figure 8 shows a comparison between this theory and a stepped
displacer cryocooler [3] which fits all of the standard set of parameters
(Table 1). The quantitative agreement is very good considering the number
and nature of the approximations described in section 3.1 and the fact
that the comparison is between a tapered and a stepped displacer. We have
measured the pressure-volume (P-V) diagram for this 4-stage machine, with
the helium pressure adjusted to give 10 K at the cold end. The area of
the P-V diagram multiplied by the operating speed gave 2 watts as the
mechanical power actually performed on the working fluid. Correcting for
non-isothermal compression reduced this to a net power of 1.3 watts. The
analytical result is 0.48 watts, surprisingly good agreement considering
that the stepped displacer is not the optimum shape and that it is
approximately twice as large as the calculated optimum.
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CONCLUSIONS AND DISCUSSION

This last comparison with experiment adds confidence to the results
of the calculations and suggests that they can provide reliable guidance
in the design of such cryocoolers. The insight into the balance between
the different loss terms in different parts of the refrigerator may also
prove useful. It is reassuring to find that each loss term varies in a
manner which can be qualitatively rationalized. The fact that regenerator
losses rise sharply in the region below 10 K is consistent with real
refrigerator experience. Thus, the model may eventually prove useful in
evaluating the real benefits of new regenerator materials prior to tedious
experimental tests.

The model could be improved in a number of ways. First, further
thought given to the variational method could lead to more rapid
convergence and hence savings of computer time. The effects of
non-sinusoidal motion and helium mass flow should be more exactly included
in the shuttle and regenerator terms to improve their accuracy. The
non-ideal properties of the working fluid should be included, a
proposition which may not be too difficult since a mechanism for including
gas effects (the regenerator term) has already been included. There are,
of course, other refinements which might be made since the loss terms rest
upon numerous assumptions. Careful study of these assumptions should be
used as a guide to such improvements. The Schmidt analysis should
probably be included to account for the realistic motion of the displacer
in the refrigeration term (equation 15). The fact that the regenerator
gap does not go precisely to zero, giving a finite dead volume and
increased mass flow should also be included.

As mentioned in the introduction, efficiency is not an adequate
measure of performance for low-power cryocoolers such as these. Where we
require no refrigeration at all, efficiency 1is zero. To utilize a
refrigerator which has non-zero efficiency providing some finite
refrigeration power implies a waste in drive power, since no refrigeration
is required by the application.

The simplest and most universal measure of performance for low-power
cryocoolers is the absolute value of the power required to run them and
maintain a fixed temperature with no dissipation at the cold end. A1l
refrigeration then goes to the interception of heat losses. In principle
there is no finite minimum value to this power. In fact, if all heat
transfer to some cold volume is reduced to zero, it takes no power at all
to maintain that temperature.

While the simple measure of drive power can be broadly applied to
intercompare different Jlow power cryocoolers, another measure of
performance within particular classes of cryocoolers may prove useful.
This is simply to state an efficiency based upon the ratio of the optimum
drive power and the actual drive power. Thus, if it takes 50 watts to run
the refrigerator shown in figure 8, then the efficiency would be (0.78/50)
x 100 = 1.56% since the optimum occurs for a drive power of 0.78 watts.
The inefficiency includes not only inefficiencies in the refrigeration
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process, but also in the compressor and drive machinery. This performance
measure could be useful where other constraints are imposed. For example,
suppose the application requires the use of many electrical leads to the
cold space. These could be included in the analysis and the performance
measure thus generated (through the optimization) would relate
specifically to the application. This 1is more reasonable than using
absolute drive power since, although no significant refrigeration power is
required, the leads do require additional refrigeration along the length
of the machine.

The authors would like to acknowledge the assistance of Ms. Diane
Ulibarri with the computer code.

TABLE 1

'Standard' Refrigerator Parameters

Stroke =5 mm Frequency = 1 Hz
Length = 0.5 mm Radiation Shield = 80 mm
Diameter

Cvlinder Wall = 3.0 mm Displacer Wall = 3.0 mm
Thickness

Upper Pressure = 5.7 x 105 Pa Lower Pressure = 1.6 x 105 Pa
Ambient Temperature = 300 K

Number of Grounded = 4 Number of Super- = 40

Rad. Shields insulation Layers*

Power dissipation at bottom end = 0.0 W

* Around each grounded radiation shield.
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Displacer /Gap
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— T

Figure 1. Schematic drawing of the tapered displacer and sleeve. The
machine is shown at the top of the stroke, S. x is measured from the
bottom end where the temperature is T_ and the radius of the displacer
js r. The sleeve wall thickness, t, i€ constant. While the taper shown
here is conical, r is not generally expected to be a iinear function of x.
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Figure 2. Flow chart for the computer program. The numbers on the left
refer to descriptions of the specific steps within the text.
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Figure 3. Results of the calculations for T_ = 5 K and the parameters

shown in Table I. The curves in the top 2 Boxes represent the optimum
results both with and without inclusion of the regenerator inefficiency.
The bottom box refers to the case including this loss term. The power is
that required to take care of the particular loss term (CON = Conduction,
SHU = Shuttle, REG = Regenerator, and RAD = Radiation) below the
associated value of x.
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Figure 4. Bottom and top radii for the displacer and power requirement as
a function of stroke for T_ = 10 K and the parameters shown in Table 1I.
The total power which includes the conduction, shuttle, radijation and
regenerator terms shown in the figure also includes a small contribution
which goes to provide refrigeration in the bottom expansion space. This
contribution is negligible on this scale.

126



1.00- =
=

- 0.75| -
o
LLj
=
O 0.0 -
o

0.25

LENGTH, m

Figure 5. Bottom and top radii for the displacer and power requirement as
a function of length for T = 10 K and the parameters shown in Table I.
The total power which includes the conduction, shuttle, radiation and
regenerator terms shown in the figure also includes a small contribution
which goes to provide refrigeration in the bottom expansion space. This
contribution is negligible on this scale.
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Figure 6. Bottom and top radii for the displacer and power requirement as
a function of frequency for T_ = 10 K and the parameters shown in Table
I. The total power which incfides the conduction, shuttle, radiation and
regenerator terms shown in the figure also includes a small contribution
which goes to provide refrigeration in the bottom expansion space. This
contribution is negligible on this scale.
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Figure 7. Bottom and top radii for the displacer and power requirement as
a function of refrigeration power for T_ = 10 K and the parameters shown
in Table I. The total power which ihcludes the conduction, shuttle,
radiation and regenerator terms shown in the figure also includes a small
contribution which goes to provide refrigeration in the bottom expansion
space. This contribution is negligible at refrigeration power = 0, but
rises to 0.36 watts at 10 mW (the right intercept).
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Figure 8. Comparison of a stepped displacer cryocooler with the
calculation. The values of the parameters used in the calculation and
which describe the refrigerator are shown in Table I.
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